0%
0

8.1.1 Advanced Theory Exam

Advanced Amateur Radio - Advanced Theory Practice Exam

 

Step up to the challenge with hamshack.ca's Advanced Theory Practice Exam, designed to evaluate your expertise in critical theoretical aspects of amateur radio. This exam is an integral component of the Advanced Amateur Radio course suite, specifically structured for those preparing for the Advanced License qualification in Canada. It focuses on five key areas:

  1. Time Constant – Capacitive and Inductive: Testing your understanding of the rate at which capacitors and inductors charge and discharge in a circuit.
  2. Electrostatic and Electromagnetic Fields, Skin Effect: Assessing your knowledge of field theory and the behavior of high-frequency currents on conductor surfaces.
  3. Series-Resonance: Examining your grasp of resonance in circuits where inductance and capacitance are aligned in a series configuration.
  4. Parallel Resonance: Quizzing your understanding of resonance in circuits with parallel-aligned inductance and capacitance.
  5. Quality Factor (Q): Checking your insight into the 'Q' factor, a dimensionless parameter that describes the damping of resonator modes.

This Advanced Theory Practice Exam pulls 25 questions from the question pool, ensuring a comprehensive test of your knowledge in these fundamental areas. The exam setup supports multiple attempts, offering a thorough learning experience and preparation for the actual certification exam.

Good luck, and enjoy the learning process.

73 Don VE7DXE

1.1 time constant – capacitive and inductive
1.2 electrostatic and electromagnetic fields, skin effect
1.3 Series-resonance
1.4 Parallel resonance
1.5 quality factor (Q) 

1 / 25

Category: Series-resonance

A-001-003-008: What is the resonant frequency of a series RLC circuit, if R is 47 ohms, L is 3 microhenrys and C is 15 picofarads?

2 / 25

Category: Series-resonance

A-001-003-009: What is the resonant frequency of a series RLC circuit, if R is 47 ohms, L is 4 microhenrys and C is 8 picofarads?

3 / 25

Category: Series-resonance

A-001-003-005: What is the resonant frequency of a series RLC circuit, if R is 47 ohms, L is 3 microhenrys and C is 40 picofarads?

4 / 25

Category: Parallel resonance

A-001-004-004: What is the resonant frequency of a parallel RLC circuit if R is 4.7 kilohms, L is 2 microhenrys and C is 30 picofarads?

5 / 25

Category: Series-resonance

A-001-003-002: What is the resonant frequency of a series RLC circuit, if R is 47 ohms, L is 40 microhenrys and C is 200 picofarads?

6 / 25

Category: Quality factor (Q)

A-001-005-004: What is the Q of a parallel RLC circuit, if it is resonant at 14.225 MHz, L is 3.5 microhenrys and R is 10 kilohms?

7 / 25

Category: Time Constant – Capacitance and Inductance

A-001-001-003: What is the term for the time required for the current in an RL circuit to build up to 63.2% of the maximum value?

 

8 / 25

Category: Electrostatic and electromagnetic fields, skin effect

A-001-002-009 What is the term for energy that is stored in an electromagnetic or electrostatic field?

9 / 25

Category: Parallel resonance

A-001-004-006: What is the resonant frequency of a parallel RLC circuit if R is 4.7 kilohms, L is 3 microhenrys and C is 40 picofarads?

10 / 25

Category: Series-resonance

A-001-003-003: What is the resonant frequency of a series RLC circuit, if R is 47 ohms, L is 50 microhenrys and C is 10 picofarads?

11 / 25

Category: Electrostatic and electromagnetic fields, skin effect

A-001-002-011 Energy is stored within an inductor that is carrying a current. The amount of energy depends on this current but also depends on a property of the inductor. This property has the following unit:

12 / 25

Category: Electrostatic and electromagnetic fields, skin effect

A-001-002-007 A wire has a current passing through it. Surrounding the wire there is:

13 / 25

Category: Electrostatic and electromagnetic fields, skin effect

A-001-002-004 Why does most of an RF current flow within a very thin layer under the conductor’s surface?

 

14 / 25

Category: Parallel resonance

A-001-004-011: What is the value of inductance (L) in a parallel RLC circuit, if the resonant frequency is 14.25 MHz and C is 44 picofarads?

15 / 25

Category: Parallel resonance

A-001-004-003: What is the resonant frequency of a parallel RLC circuit if R is 4.7 kilohms, L is 5 microhenrys and C is 9 picofarads?

16 / 25

Category: Time Constant – Capacitance and Inductance

A-001-001-010: What is time constant of a circuit having a 220 microfarad capacitor in series with a 470 kilohm resistor?

 

17 / 25

Category: Quality factor (Q)

A-001-005-001: What is the Q of a parallel RLC circuit, if it is resonant at 14.128 MHz, L is 2.7 microhenrys and R is 18 kilohms?

18 / 25

Category: Quality factor (Q)

A-001-005-003: What is the Q of a parallel RLC circuit, if it is resonant at 4.468 MHz, L is 47 microhenrys and R is 180 ohms?

19 / 25

Category: Time Constant – Capacitance and Inductance

A-001-001-005: What is meant by "back EMF"?

20 / 25

Category: Electrostatic and electromagnetic fields, skin effect

A-001-002-001 What is the result of skin effect?

21 / 25

Category: Quality factor (Q)

A-001-005-005: What is the Q of a parallel RLC circuit, if it is resonant at 7.125 MHz, L is 8.2 microhenrys and R is 1 kilohm?

22 / 25

Category: Quality factor (Q)

A-001-005-009: What is the Q of a parallel RLC circuit, if it is resonant at 3.625 MHz, L is 42 microhenrys and R is 220 ohms?

23 / 25

Category: Series-resonance

A-001-003-007: What is the resonant frequency of a series RLC circuit, if R is 47 ohms, L is 8 microhenrys and C is 7 picofarads?

24 / 25

Category: Time Constant – Capacitance and Inductance

A-001-001-008: What is the time constant of a circuit having a 100 microfarad capacitor in series with a 470 kilohm resistor?

 

25 / 25

Category: Time Constant – Capacitance and Inductance

A-001-001-004: What is the term for the time it takes for a charged capacitor in an RC circuit to discharge to 36.8% of its initial value of stored charge?

 

Your score is

The average score is 0%

0%

Please enter your name and Callsign and contact info in the 'Leave a Rating' section (Click the Rating Stars) to open the Comments Form.

Thanks for your comments!